Design and Implementation of Integrity Preserved Content Delivery Service for Vehicle Black Box

Jonghwan Hyun1, Jian Li2, Jae Yoon Chung1, Yoonseon Han3, Taeyoel Jeong1, and James Won-Ki Hong1,2

1 Department of Computer Science and Engineering, POSTECH, Pohang, Korea
2 Division of IT Convergence Engineering, POSTECH, Pohang, Korea

Introduction

- **Vehicle Black Box**
 - Rapidly growing market
 - Benefits brought by Black Box Content
 - Clarity the locus of responsibilities for accidents
 - Perform surveillance, prevent car damage
- **Problems Statement**
 - Lack of a systematic way to manage and distribute the content from heterogeneous black boxes to various devices
 - Lack of integrity preservation for black box content, which avoids legal force
- **Contributions**
 - Propose black box content delivery service and system architectures by guaranteeing the content integrity is preserved
 - Implement smartphone applications on top of the proposed architecture to show the applicability of the proposed architecture

Service Architecture

- **Black Box Content Delivery Service Architecture**
 - The black box content is collected from each individual black box to centralized Content Management Server (CMS)
 - The CMS analyzes, processes, manages and distributes the content to the third parties (e.g., Broadcast company and insurance company) and individuals who have interest to the content

System Architecture

- The system is composed of three sub-systems
 - **Content Provider**: extracts black box content from the hardware black box, and uploads it to the content management server
 - **Content Management Server**: collects content from content providers, and delivers it to content consumers
 - **Content Consumer**: is anyone who watches and shares black box content on the content management server

Security

- **Purpose**
 - To give the legal force to black box contents stored in the server
 - To accept video from the authenticated black box only
- **Requirements**
 - **Integrity**: Contents generated by black box should be transferred and stored without modification.
 - **Non-repudiation**: Each black box content should be identified by the black box which generates the contents.
 - **Access Control**: Only the owner of black box should have rights to access to the uploaded black box contents.
- **Secure Upload Process**
 - Each black box registers its S/N to the server and receive a private key in advance.
 - The server can authenticate the black box by verifying its private key using challenge-response authentication.
 - The owner of the black box is excluded during the process since he/she is one of the potential attacker

Implementation & Prototype

- **System Implementation**
 - **Content Collection**: content extraction, tagging the meta data, content upload
 - **Content Transcoding**: perform multiple content transcoding in various content format for the purpose of supporting heterogeneous devices
 - **Content Sharing**: support real-time content streaming to various smartphone platforms, by making use of Apple HTTP Live Streaming (HLS)

Concluding Remarks

- **Conclusions**
 - We proposed a black box content delivery service architecture with preserving integrity of black box content
 - We implemented a prototype program for validating the proposed architecture
- **Future Research**
 - Preserve the user privacy by applying video analysis techniques such as object detection and anonymization
 - Detect certain events for selective content delivery in order to reduce traffic